The lambda - context calculus ( extended version ) 1

نویسندگان

  • Murdoch J. Gabbay
  • Stéphane Lengrand
چکیده

We present the Lambda Context Calculus. This simple lambda-calculus features variables arranged in a hierarchy of strengths such that substitution of a strong variable does not avoid capture with respect to abstraction by a weaker variable. This allows the calculus to express both capture-avoiding and capturing substitution (instantiation). The reduction rules extend the ‘vanilla’ lambda-calculus in a simple and modular way and preserve the look and feel of a standard lambda-calculus with explicit substitutions. Good properties of the lambda-calculus are preserved. The LamCC is confluent, and a natural injection into the LamCC of the untyped lambda-calculus exists and preserves strong normalisation. We discuss the calculus and its design with full proofs. In the presence of the hierarchy of variables, functional binding splits into a functional abstraction λ (lambda) and a name-binder N(new). We investigate how the components of this calculus interact with each other and with the reduction rules, with examples. In two more extended case studies we demonstrate how global state can be expressed, and how contexts and contextual equivalence can be naturally internalised using function application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Abstraction for the Resource Lambda Calculus with Tests, through Taylor Expansion

We study the semantics of a resource-sensitive extension of the lambda calcu-lus in a canonical reflexive object of a category of sets and relations, a relational version ofScott’s original model of the pure lambda calculus. This calculus is related to Boudol’s re-source calculus and is derived from Ehrhard and Regnier’s differential extension of LinearLogic and of the lambda ca...

متن کامل

Ins - R 9703 1997

The paper presents a simple format for typed logics with states by adding a function for register update to standard typed lambda calculus. It is shown that universal validity of equality for this extended language is decidable (extending a well-known result of Friedman for typed lambda calculus). This system is next extended to a full edged typed dynamic logic, and it is illustrated how the re...

متن کامل

On Generic Context Lemmas for Lambda Calculi with Sharing

This paper proves several generic variants of context lemmas and thus contributes to improving the tools for observational semantics of deterministic and non-deterministic higher-order calculi that use a small-step reduction semantics. The generic (sharing) context lemmas are provided for mayas well as two variants of must-convergence, which hold in a broad class of extended processand extended...

متن کامل

Applicative Bisimulation and Quantum $\lambda$-Calculi (Long Version)

Applicative bisimulation is a coinductive technique to check program equivalence in higherorder functional languages. It is known to be sound— and sometimes complete — with respect to context equivalence. In this paper we show that applicative bisimulation also works when the underlying language of programs takes the form of a linear λ-calculus extended with features such as probabilistic binar...

متن کامل

Counting and Generating Terms in the Binary Lambda Calculus (Extended version)

In a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda terms and derive results from their generating functions, especially that the number of terms of size n grows roughly like 1.963447954 . . .. In a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009